Advancing bio-based materials for sustainable solutions to food packaging

Advancing bio-based materials for sustainable solutions to food packaging
  • Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article 

    Google Scholar
     

  • de Souza Machado, A. A., Kloas, W., Zarfl, C., Hempel, S. & Rillig, M. C. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Change Biol. 24, 1405–1416 (2018).

    Article 

    Google Scholar
     

  • Cole, M., Lindeque, P., Halsband, C. & Galloway, T. S. Microplastics as contaminants in the marine environment: a review. Mar. Pollut. Bull. 62, 2588–2597 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J., Wang, L., Trasande, L. & Kannan, K. Occurrence of polyethylene terephthalate and polycarbonate microplastics in infant and adult feces. Environ. Sci. Technol. Lett. 8, 989–994 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, T. et al. Developing fibrillated cellulose as a sustainable technological material. Nature 590, 47–56 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ates, B., Koytepe, S., Ulu, A., Gurses, C. & Thakur, V. K. Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources. Chem. Rev. 120, 9304–9362 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Virtanen, S., Chowreddy, R. R., Irmak, S., Honkapää, K. & Isom, L. Food industry co-streams: potential raw materials for biodegradable mulch film applications. J. Polym. Environ. 25, 1110–1130 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Circular Economy Action Plan (European Commission, 2020); https://doi.org/10.2775/855540

  • Stahel, W. R. The circular economy. Nature 531, 435–438 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Pauliuk, S. Making sustainability science a cumulative effort. Nat. Sustain. 3, 2–4 (2020).

    Article 

    Google Scholar
     

  • Moradali, M. F. & Rehm, B. H. A. Bacterial biopolymers: from pathogenesis to advanced materials. Nat. Rev. Microbiol. 18, 195–210 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kaur, L., Khajuria, R., Parihar, L. & Singh, G. D. Polyhydroxyalkanoates: biosynthesis to commercial production—a review. J. Microbiol. Biotechnol. Food Sci. 6, 1098–1106 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Jabeen, N., Majid, I. & Nayik, G. A. Bioplastics and food packaging: a review. Cogent Food Agric. 1, 1117749 (2015).

    Article 

    Google Scholar
     

  • Yan, N. & Chen, X. Sustainability: don’t waste seafood waste. Nature 524, 155–157 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Domard, A. A perspective on 30 years research on chitin and chitosan. Carbohydr. Polym. 84, 696–703 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Tardy, B. L. et al. Deconstruction and reassembly of renewable polymers and biocolloids into next generation structured materials. Chem. Rev. 121, 14088–14188 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sachs, J. D. et al. Six transformations to achieve the Sustainable Development Goals. Nat. Sustain. 2, 805–814 (2019).

    Article 

    Google Scholar
     

  • Jones, M., Gandia, A., John, S. & Bismarck, A. Leather-like material biofabrication using fungi. Nat. Sustain. 4, 9–16 (2020).

    Article 

    Google Scholar
     

  • Zhao, X., Cornish, K. & Vodovotz, Y. Narrowing the gap for bioplastic use in food packaging: an update. Environ. Sci. Technol. 54, 4712–4732 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Camberato, J. J., Gagnon, B., Angers, D. A., Chantigny, M. H. & Pan, W. L. Pulp and paper mill by-products as soil amendments and plant nutrient sources. Can. J. Soil Sci. 86, 641–653 (2006).

    Article 

    Google Scholar
     

  • Faria, M. et al. Minimum information reporting in bio–nano experimental literature. Nat. Nanotechnol. 13, 777–785 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Schultz, D. & Campeau, L. C. Harder, better, faster. Nat. Chem. 12, 661–664 (2020).

    Article 

    Google Scholar
     

  • Debecker, D. P. et al. Shaping effective practices for incorporating sustainability assessment in manuscripts submitted to ACS Sustainable Chemistry & Engineering: catalysis and catalytic processes. ACS Sustain. Chem. Eng. 9, 4936–4940 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xia, Q. et al. A strong, biodegradable and recyclable lignocellulosic bioplastic. Nat. Sustain. 4, 627–635 (2021).

    Article 

    Google Scholar
     

  • Vollmer, I. et al. Beyond mechanical recycling: giving new life to plastic waste. Angew. Chem. Int. Ed. 59, 15402–15423 (2020).

    Article 
    CAS 

    Google Scholar
     

  • RameshKumar, S., Shaiju, P., O’Connor, K. E. & P, R. B. Bio-based and biodegradable polymers—state-of-the-art, challenges and emerging trends. Curr. Opin. Green Sustain. Chem. 21, 75–81 (2020).

    Article 

    Google Scholar
     

  • Villanueva, A. & Wenzel, H. Paper waste—recycling, incineration or landfilling? A review of existing life cycle assessments. Waste Manage. 27, S29–S46 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Melo, F. P. L. et al. Adding forests to the water–energy–food nexus. Nat. Sustain. 4, 85–92 (2021).

    Article 

    Google Scholar
     

  • Wyser, Y. & Shires, D. Increasing the quality and impact of manuscripts in the field of new materials. Packag. Technol. Sci. 32, 3–5 (2019).

    Article 

    Google Scholar
     

  • Kinnunen, P. et al. Local food crop production can fulfil demand for less than one-third of the population. Nat. Food 1, 229–237 (2020).

    Article 

    Google Scholar
     

  • Verghese, K., Lewis, H., Lockrey, S. & Williams, H. Packaging’s role in minimizing food loss and waste across the supply chain. Packag. Technol. Sci. 28, 603–620 (2015).

    Article 

    Google Scholar
     

  • Wang, J. et al. Moisture and oxygen barrier properties of cellulose nanomaterial-based films. ACS Sustain. Chem. Eng. 6, 49–70 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Tardy, B. L. et al. Exploiting supramolecular interactions from polymeric colloids for strong anisotropic adhesion between solid surfaces. Adv. Mater. 32, 1906886 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sev, A. How can the construction industry contribute to sustainable development? A conceptual framework. Sustain. Dev. 17, 161–173 (2009).

    Article 

    Google Scholar
     

  • Agarwal, J., Sahoo, S., Mohanty, S. & Nayak, S. K. Progress of novel techniques for lightweight automobile applications through innovative eco-friendly composite materials: a review. J. Thermoplast. Compos. Mater. 33, 978–1013 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jabbour, L., Bongiovanni, R., Chaussy, D., Gerbaldi, C. & Beneventi, D. Cellulose-based Li-ion batteries: a review. Cellulose 20, 1523–1545 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Agate, S., Joyce, M., Lucia, L. & Pal, L. Cellulose and nanocellulose-based flexible-hybrid printed electronics and conductive composites—a review. Carbohydr. Polym. 198, 249–260 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Blankenship, R. E. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805–809 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Ioannidis, J., Kim, B. & Trounson, A. How to design preclinical studies in nanomedicine and cell therapy to maximize the prospects of clinical translation. Nat. Biomed. Eng. 2, 797–809 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3, 211–221 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Yam, K. The Wiley Encyclopedia of Packaging Technology (John Wiley & Sons, 2010).