Local IL-10 delivery modulates the immune response and enhances repair of volumetric muscle loss muscle injury

Local IL-10 delivery modulates the immune response and enhances repair of volumetric muscle loss muscle injury
  • Hill, M., Wernig, A. & Goldspink, G. Muscle satellite (stem) cell activation during local tissue injury and repair. J. Anat. 203, 89–99 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Mauro, A. Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 9, 493–495 (1961).

    Article 
    CAS 

    Google Scholar
     

  • Corona, B. T., Rivera, J. C., Owens, J. G., Wenke, J. C. & Rathbone, C. R. Volumetric muscle loss leads to permanent disability following extremity trauma. J. Rehabil. Res. Dev. 52, 785–792. https://doi.org/10.1682/JRRD.2014.07.0165 (2015).

    Article 

    Google Scholar
     

  • Corona, B. T., Wenke, J. C. & Ward, C. L. Pathophysiology of volumetric muscle loss injury. Cells Tissues Organs 202, 180–188. https://doi.org/10.1159/000443925 (2016).

    Article 

    Google Scholar
     

  • Hurtgen, B. J. et al. Severe muscle trauma triggers heightened and prolonged local musculoskeletal inflammation and impairs adjacent tibia fracture healing. J. Musculoskelet. Neuronal Interact. 16, 122–134 (2016).

    CAS 

    Google Scholar
     

  • Terada, N., Takayama, S., Yamada, H. & Seki, T. Muscle repair after a transsection injury with development of a gap: An experimental study in rats. Scand. J. Plast. Reconstr. Surg. Hand Surg. 35, 233–238 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Kasukonis, B. et al. Codelivery of infusion decellularized skeletal muscle with minced muscle autografts improved recovery from volumetric muscle loss injury in a rat model. Tissue Eng. Part A https://doi.org/10.1089/ten.TEA.2016.0134 (2016).

    Article 

    Google Scholar
     

  • Hurd, S. A., Bhatti, N. M., Walker, A. M., Kasukonis, B. M. & Wolchok, J. C. Development of a biological scaffold engineered using the extracellular matrix secreted by skeletal muscle cells. Biomaterials 49, 9–17. https://doi.org/10.1016/j.biomaterials.2015.01.027 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Kasukonis, B., Kim, J., Washington, T. & Wolchok, J. Development of an infusion bioreactor for the accelerated preparation of decellularized skeletal muscle scaffolds. Biotechnol. Prog. https://doi.org/10.1002/btpr.2257 (2016).

    Article 

    Google Scholar
     

  • Wilson, K., Terlouw, A., Roberts, K. & Wolchok, J. C. The characterization of decellularized human skeletal muscle as a blueprint for mimetic scaffolds. J. Mater. Sci. Mater. Med. 27, 125. https://doi.org/10.1007/s10856-016-5735-0 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J. et al. Graft alignment impacts the regenerative response of skeletal muscle after volumetric muscle loss in a rat model. Acta Biomater https://doi.org/10.1016/j.actbio.2020.01.024 (2020).

    Article 

    Google Scholar
     

  • Kim, J. T. et al. Regenerative repair of volumetric muscle loss injury is sensitive to age. Tissue Eng. Part A 26, 3–14. https://doi.org/10.1089/ten.TEA.2019.0034 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Corona, B. T. et al. Autologous minced muscle grafts: A tissue engineering therapy for the volumetric loss of skeletal muscle. Am. J. Physiol. Cell Physiol. 305, C761-775. https://doi.org/10.1152/ajpcell.00189.2013 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Corona, B. T. et al. Further development of a tissue engineered muscle repair construct in vitro for enhanced functional recovery following implantation in vivo in a murine model of volumetric muscle loss injury. Tissue Eng. Part A 18, 1213–1228. https://doi.org/10.1089/ten.TEA.2011.0614 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Corona, B. T., Ward, C. L., Baker, H. B., Walters, T. J. & Christ, G. J. Implantation of in vitro tissue engineered muscle repair constructs and bladder acellular matrices partially restore in vivo skeletal muscle function in a rat model of volumetric muscle loss injury. Tissue Eng. Part A 20, 705–715. https://doi.org/10.1089/ten.TEA.2012.0761 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Machingal, M. A. et al. A tissue-engineered muscle repair construct for functional restoration of an irrecoverable muscle injury in a murine model. Tissue Eng. Part A 17, 2291–2303. https://doi.org/10.1089/ten.TEA.2010.0682 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Merritt, E. K. et al. Repair of traumatic skeletal muscle injury with bone-marrow-derived mesenchymal stem cells seeded on extracellular matrix. Tissue Eng. Part A 16, 2871–2881. https://doi.org/10.1089/ten.TEA.2009.0826 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Tidball, J. G. Regulation of muscle growth and regeneration by the immune system. Nat. Rev. Immunol. 17, 165–178. https://doi.org/10.1038/nri.2016.150 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Tidball, J. G. Inflammatory processes in muscle injury and repair. Am. J. Physiol. 288, R345-353. https://doi.org/10.1152/ajpregu.00454.2004 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Brunelli, S. & Rovere-Querini, P. The immune system and the repair of skeletal muscle. Pharmacol. Res. 58, 117–121. https://doi.org/10.1016/j.phrs.2008.06.008 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Deyhle, M. R. & Hyldahl, R. D. The role of T lymphocytes in skeletal muscle repair from traumatic and contraction-induced injury. Front. Physiol. 9, 768. https://doi.org/10.3389/fphys.2018.00768 (2018).

    Article 

    Google Scholar
     

  • Tidball, J. G. Mechanisms of muscle injury, repair, and regeneration. Compr. Physiol. 1, 2029–2062. https://doi.org/10.1002/cphy.c100092 (2011).

    Article 

    Google Scholar
     

  • Tidball, J. G. & Villalta, S. A. Regulatory interactions between muscle and the immune system during muscle regeneration. Am. J. Physiol. 298, R1173-1187. https://doi.org/10.1152/ajpregu.00735.2009 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Bonomo, A. et al. Crosstalk between inate and T cell adaptive immunity with(in) the muscle. Front. Physiol. 11, 1–11 (2020).

    Article 

    Google Scholar
     

  • Wynn, T. A. & Vannella, K. M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44, 450–462. https://doi.org/10.1016/j.immuni.2016.02.015 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Hurtgen, B. J. et al. Autologous minced muscle grafts improve endogenous fracture healing and muscle strength after musculoskeletal trauma. Physiol. Rep. 5, e13362. https://doi.org/10.14814/phy2.13362 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Crum, R. J. et al. Transcriptomic, proteomic, and morphologic characterization of healing in volumetric muscle loss. Tissue Eng. Part A https://doi.org/10.1089/ten.TEA.2022.0113 (2022).

    Article 

    Google Scholar
     

  • Simpson, R. J., Florida-James, G. D., Whyte, G. P. & Guy, K. The effects of intensive, moderate and downhill treadmill running on human blood lymphocytes expressing the adhesion/activation molecules CD54 (ICAM-1), CD18 (beta2 integrin) and CD53. Eur. J. Appl. Physiol. 97, 109–121. https://doi.org/10.1007/s00421-006-0146-4 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Gopinathan, G. et al. Interleukin-6 stimulates defective angiogenesis. Can. Res. 75, 3098–3107. https://doi.org/10.1158/0008-5472.can-15-1227 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Hoeben, A. et al. Vascular endothelial growth factor and angiogenesis. Pharmacol. Rev. 56, 549–580. https://doi.org/10.1124/pr.56.4.3 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Perdiguero, E. et al. p38/MKP-1-regulated AKT coordinates macrophage transitions and resolution of inflammation during tissue repair. J. Cell Biol. 195, 307–322. https://doi.org/10.1083/jcb.201104053 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Sag, D., Carling, D., Stout, R. D. & Suttles, J. Adenosine 5’-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J. Immunol. 181, 8633–8641 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Deng, B., Wehling-Henricks, M., Villalta, S. A., Wang, Y. & Tidball, J. G. IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. J. Immunol. 189, 3669–3680. https://doi.org/10.4049/jimmunol.1103180 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Schmitz, J. et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23, 479–490. https://doi.org/10.1016/j.immuni.2005.09.015 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Kuswanto, W. et al. Poor repair of skeletal muscle in aging mice reflects a defect in local, interleukin-33-dependent accumulation of regulatory T cells. Immunity 44, 355–367. https://doi.org/10.1016/j.immuni.2016.01.009 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Burzyn, D. et al. A special population of regulatory T cells potentiates muscle repair. Cell 155, 1282–1295. https://doi.org/10.1016/j.cell.2013.10.054 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Lužnik, Z., Anchouche, S. & Dana, R. Regulatory T cells in angiogenesis. J Immunol 205, 2557–2565. https://doi.org/10.4049/jimmunol.2000574 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Machhi, J. et al. Harnessing regulatory T cell neuroprotective activities for treatment of neurodegenerative disorders. Mol Neurodegener. 15, 32. https://doi.org/10.1186/s13024-020-00375-7 (2020).

    Article 

    Google Scholar
     

  • Weirather, J. et al. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ. Res. 115, 55–67. https://doi.org/10.1161/circresaha.115.303895 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Doherty, K. R. et al. Normal myoblast fusion requires myoferlin. Development 132, 5565–5575. https://doi.org/10.1242/dev.02155 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Demonbreun, A. R. et al. Myoferlin regulation by NFAT in muscle injury, regeneration and repair. J. Cell Sci. 123, 2413–2422. https://doi.org/10.1242/jcs.065375 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Doherty, K. R. et al. The endocytic recycling protein EHD2 interacts with myoferlin to regulate myoblast fusion. J. Biol. Chem. 283, 20252–20260. https://doi.org/10.1074/jbc.M802306200 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Horsley, V., Jansen, K. M., Mills, S. T. & Pavlath, G. K. IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113, 483–494. https://doi.org/10.1016/S0092-8674(03)00319-2 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Borselli, C. et al. Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc. Natl. Acad. Sci. U.S.A. 107, 3287–3292. https://doi.org/10.1073/pnas.0903875106 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Borselli, C., Cezar, C. A., Shvartsman, D., Vandenburgh, H. H. & Mooney, D. J. The role of multifunctional delivery scaffold in the ability of cultured myoblasts to promote muscle regeneration. Biomaterials 32, 8905–8914. https://doi.org/10.1016/j.biomaterials.2011.08.019 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Uciechowski, P. & Dempke, W. C. M. Interleukin-6: A masterplayer in the cytokine network. Oncology 98, 131–137. https://doi.org/10.1159/000505099 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Akdis, M. et al. Interleukins, from 1 to 37, and interferon-gamma: Receptors, functions, and roles in diseases. J. Allergy Clin. Immun. 127, 701-U317. https://doi.org/10.1016/j.jaci.2010.11.050 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Huey, K. A. Potential roles of vascular endothelial growth factor during skeletal muscle hypertrophy. Exerc. Sport Sci. Rev. 46, 195–202. https://doi.org/10.1249/JES.0000000000000152 (2018).

    Article 

    Google Scholar
     

  • Meng, J. et al. Accelerated regeneration of the skeletal muscle in RNF13-knockout mice is mediated by macrophage-secreted IL-4/IL-6. Protein Cell 5, 235–247. https://doi.org/10.1007/s13238-014-0025-4 (2014).

    Article 
    CAS 

    Google Scholar
     

  • White, J. & Smythe, G. (eds) Growth Factors and Cytokines in Skeletal Muscle Development, Growth, Regeneration and Disease (Springer, 2016).


    Google Scholar
     

  • Rochman, I., Paul, W. E. & Ben-Sasson, S. Z. IL-6 increases primed cell expansion and survival. J. Immunol. 174, 4761–4767. https://doi.org/10.4049/jimmunol.174.8.4761 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Sawano, S. et al. Supplementary immunocytochemistry of hepatocyte growth factor production in activated macrophages early in muscle regeneration. Anim. Sci. J. Nihon chikusan Gakkaiho 85, 994–1000. https://doi.org/10.1111/asj.12264 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Tonkin, J. et al. Monocyte/macrophage-derived IGF-1 orchestrates murine skeletal muscle regeneration and modulates autocrine polarization. Mol. Ther. 23, 1189–1200. https://doi.org/10.1038/mt.2015.66 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Kasukonis, B. et al. Codelivery of infusion decellularized skeletal muscle with minced muscle autografts improved recovery from volumetric muscle loss injury in a rat model. Tissue Eng. Part A 22, 1151–1163. https://doi.org/10.1089/ten.TEA.2016.0134 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ward, C. L. et al. Autologous minced muscle grafts improve muscle strength in a porcine model of volumetric muscle loss injury. J. Orthop. Trauma 30, e396–e403. https://doi.org/10.1097/BOT.0000000000000673 (2016).

    Article 

    Google Scholar
     

  • Aurora, A., Garg, K., Corona, B. T. & Walters, T. J. Physical rehabilitation improves muscle function following volumetric muscle loss injury. BMC Sports Sci. Med. Rehabil. https://doi.org/10.1186/2052-1847-6-41 (2014).

    Article 

    Google Scholar
     

  • Mintz, E. L. et al. Long-term evaluation of functional outcomes following rat volumetric muscle loss injury and repair. Tissue Eng. Part A 26, 140–156. https://doi.org/10.1089/ten.TEA.2019.0126 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Nakayama, K. H. et al. Rehabilitative exercise and spatially patterned nanofibrillar scaffolds enhance vascularization and innervation following volumetric muscle loss. NPJ Regener. Med. 3, 16. https://doi.org/10.1038/s41536-018-0054-3 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Quarta, M. et al. Bioengineered constructs combined with exercise enhance stem cell-mediated treatment of volumetric muscle loss. Nat. Commun. 8, 15613. https://doi.org/10.1038/ncomms15613 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Montravers, P., Maulin, L., Mohler, J. & Carbon, C. Microbiological and inflammatory effects of murine recombinant interleukin-10 in two models of polymicrobial peritonitis in rats. Infect. Immun. 67, 1579–1584. https://doi.org/10.1128/IAI.67.4.1579-1584.1999 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Alvarez, H. M. et al. Effects of PEGylation and immune complex formation on the pharmacokinetics and biodistribution of recombinant interleukin 10 in mice. Drug Metab. Dispos. 40, 360–373. https://doi.org/10.1124/dmd.111.042531 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Szelenyi, E. R. & Urso, M. L. Time-course analysis of injured skeletal muscle suggests a critical involvement of ERK1/2 signaling in the acute inflammatory response. Muscle Nerve 45, 552–561. https://doi.org/10.1002/mus.22323 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Ramos, L. et al. Characterization of skeletal muscle strain lesion induced by stretching in rats: Effects of laser photobiomodulation. Photomed. Laser Surg. 36, 460–467. https://doi.org/10.1089/pho.2018.4473 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Beiting, D. P., Bliss, S. K., Schlafer, D. H., Roberts, V. L. & Appleton, J. A. Interleukin-10 limits local and body cavity inflammation during infection with muscle-stage Trichinella spiralis. Infect. Immun. 72, 3129–3137. https://doi.org/10.1128/IAI.72.6.3129-3137.2004 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Barbe, M. F. et al. Key indicators of repetitive overuse-induced neuromuscular inflammation and fibrosis are prevented by manual therapy in a rat model. BMC Musculoskelet. Disord. 22, 417. https://doi.org/10.1186/s12891-021-04270-0 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Garg, K., Ward, C. L., Rathbone, C. R. & Corona, B. T. Transplantation of devitalized muscle scaffolds is insufficient for appreciable de novo muscle fiber regeneration after volumetric muscle loss injury. Cell Tissue Res. 358, 857–873. https://doi.org/10.1007/s00441-014-2006-6 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Wu, X., Corona, B. T., Chen, X. & Walters, T. J. A standardized rat model of volumetric muscle loss injury for the development of tissue engineering therapies. BioResearch Open access 1, 280–290. https://doi.org/10.1089/biores.2012.0271 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J. T., Kasukonis, B. M., Brown, L. A., Washington, T. A. & Wolchok, J. C. Recovery from volumetric muscle loss injury: A comparison between young and aged rats. Exp. Gerontol. 83, 37–46. https://doi.org/10.1016/j.exger.2016.07.008 (2016).

    Article 

    Google Scholar
     

  • Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21. https://doi.org/10.1093/bioinformatics/bts635 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Liao, Y., Smyth, G. K. & Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930. https://doi.org/10.1093/bioinformatics/btt656 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140. https://doi.org/10.1093/bioinformatics/btp616 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Kramer, A., Green, J., Pollard, J. Jr. & Tugendreich, S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 30, 523–530. https://doi.org/10.1093/bioinformatics/btt703 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Dunn, C. et al. Blood-brain barrier breakdown and astrocyte reactivity evident in the absence of behavioral changes after repeated traumatic brain injury. Neurotrauma Rep. 2, 399–410. https://doi.org/10.1089/neur.2021.0017 (2021).

    Article 

    Google Scholar
     

  • Castilla-Casadiego, D. A. et al. Methods for the assembly and characterization of polyelectrolyte multilayers as microenvironments to modulate human mesenchymal stromal cell response. ACS Biomater. Sci. Eng. 6, 6626–6651. https://doi.org/10.1021/acsbiomaterials.0c01397 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Brown, L. A. et al. Moderators of skeletal muscle maintenance are compromised in sarcopenic obese mice. Mech. Ageing Dev. 194, 111404. https://doi.org/10.1016/j.mad.2020.111404 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Reed, C. Synthesis and Performance Testing of ECM Fiber Scaffolds. Master of Science thesis, University of Arkansas (2021).