Local IL-10 delivery modulates the immune response and enhances repair of volumetric muscle loss muscle injury
Hill, M., Wernig, A. & Goldspink, G. Muscle satellite (stem) cell activation during local tissue injury and repair. J. Anat. 203, 89–99 (2003).
Mauro, A. Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 9, 493–495 (1961).
Corona, B. T., Rivera, J. C., Owens, J. G., Wenke, J. C. & Rathbone, C. R. Volumetric muscle loss leads to permanent disability following extremity trauma. J. Rehabil. Res. Dev. 52, 785–792. https://doi.org/10.1682/JRRD.2014.07.0165 (2015).
Corona, B. T., Wenke, J. C. & Ward, C. L. Pathophysiology of volumetric muscle loss injury. Cells Tissues Organs 202, 180–188. https://doi.org/10.1159/000443925 (2016).
Hurtgen, B. J. et al. Severe muscle trauma triggers heightened and prolonged local musculoskeletal inflammation and impairs adjacent tibia fracture healing. J. Musculoskelet. Neuronal Interact. 16, 122–134 (2016).
Terada, N., Takayama, S., Yamada, H. & Seki, T. Muscle repair after a transsection injury with development of a gap: An experimental study in rats. Scand. J. Plast. Reconstr. Surg. Hand Surg. 35, 233–238 (2001).
Kasukonis, B. et al. Codelivery of infusion decellularized skeletal muscle with minced muscle autografts improved recovery from volumetric muscle loss injury in a rat model. Tissue Eng. Part A https://doi.org/10.1089/ten.TEA.2016.0134 (2016).
Hurd, S. A., Bhatti, N. M., Walker, A. M., Kasukonis, B. M. & Wolchok, J. C. Development of a biological scaffold engineered using the extracellular matrix secreted by skeletal muscle cells. Biomaterials 49, 9–17. https://doi.org/10.1016/j.biomaterials.2015.01.027 (2015).
Kasukonis, B., Kim, J., Washington, T. & Wolchok, J. Development of an infusion bioreactor for the accelerated preparation of decellularized skeletal muscle scaffolds. Biotechnol. Prog. https://doi.org/10.1002/btpr.2257 (2016).
Wilson, K., Terlouw, A., Roberts, K. & Wolchok, J. C. The characterization of decellularized human skeletal muscle as a blueprint for mimetic scaffolds. J. Mater. Sci. Mater. Med. 27, 125. https://doi.org/10.1007/s10856-016-5735-0 (2016).
Kim, J. et al. Graft alignment impacts the regenerative response of skeletal muscle after volumetric muscle loss in a rat model. Acta Biomater https://doi.org/10.1016/j.actbio.2020.01.024 (2020).
Kim, J. T. et al. Regenerative repair of volumetric muscle loss injury is sensitive to age. Tissue Eng. Part A 26, 3–14. https://doi.org/10.1089/ten.TEA.2019.0034 (2020).
Corona, B. T. et al. Autologous minced muscle grafts: A tissue engineering therapy for the volumetric loss of skeletal muscle. Am. J. Physiol. Cell Physiol. 305, C761-775. https://doi.org/10.1152/ajpcell.00189.2013 (2013).
Corona, B. T. et al. Further development of a tissue engineered muscle repair construct in vitro for enhanced functional recovery following implantation in vivo in a murine model of volumetric muscle loss injury. Tissue Eng. Part A 18, 1213–1228. https://doi.org/10.1089/ten.TEA.2011.0614 (2012).
Corona, B. T., Ward, C. L., Baker, H. B., Walters, T. J. & Christ, G. J. Implantation of in vitro tissue engineered muscle repair constructs and bladder acellular matrices partially restore in vivo skeletal muscle function in a rat model of volumetric muscle loss injury. Tissue Eng. Part A 20, 705–715. https://doi.org/10.1089/ten.TEA.2012.0761 (2014).
Machingal, M. A. et al. A tissue-engineered muscle repair construct for functional restoration of an irrecoverable muscle injury in a murine model. Tissue Eng. Part A 17, 2291–2303. https://doi.org/10.1089/ten.TEA.2010.0682 (2011).
Merritt, E. K. et al. Repair of traumatic skeletal muscle injury with bone-marrow-derived mesenchymal stem cells seeded on extracellular matrix. Tissue Eng. Part A 16, 2871–2881. https://doi.org/10.1089/ten.TEA.2009.0826 (2010).
Tidball, J. G. Regulation of muscle growth and regeneration by the immune system. Nat. Rev. Immunol. 17, 165–178. https://doi.org/10.1038/nri.2016.150 (2017).
Tidball, J. G. Inflammatory processes in muscle injury and repair. Am. J. Physiol. 288, R345-353. https://doi.org/10.1152/ajpregu.00454.2004 (2005).
Brunelli, S. & Rovere-Querini, P. The immune system and the repair of skeletal muscle. Pharmacol. Res. 58, 117–121. https://doi.org/10.1016/j.phrs.2008.06.008 (2008).
Deyhle, M. R. & Hyldahl, R. D. The role of T lymphocytes in skeletal muscle repair from traumatic and contraction-induced injury. Front. Physiol. 9, 768. https://doi.org/10.3389/fphys.2018.00768 (2018).
Tidball, J. G. Mechanisms of muscle injury, repair, and regeneration. Compr. Physiol. 1, 2029–2062. https://doi.org/10.1002/cphy.c100092 (2011).
Tidball, J. G. & Villalta, S. A. Regulatory interactions between muscle and the immune system during muscle regeneration. Am. J. Physiol. 298, R1173-1187. https://doi.org/10.1152/ajpregu.00735.2009 (2010).
Bonomo, A. et al. Crosstalk between inate and T cell adaptive immunity with(in) the muscle. Front. Physiol. 11, 1–11 (2020).
Wynn, T. A. & Vannella, K. M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44, 450–462. https://doi.org/10.1016/j.immuni.2016.02.015 (2016).
Hurtgen, B. J. et al. Autologous minced muscle grafts improve endogenous fracture healing and muscle strength after musculoskeletal trauma. Physiol. Rep. 5, e13362. https://doi.org/10.14814/phy2.13362 (2017).
Crum, R. J. et al. Transcriptomic, proteomic, and morphologic characterization of healing in volumetric muscle loss. Tissue Eng. Part A https://doi.org/10.1089/ten.TEA.2022.0113 (2022).
Simpson, R. J., Florida-James, G. D., Whyte, G. P. & Guy, K. The effects of intensive, moderate and downhill treadmill running on human blood lymphocytes expressing the adhesion/activation molecules CD54 (ICAM-1), CD18 (beta2 integrin) and CD53. Eur. J. Appl. Physiol. 97, 109–121. https://doi.org/10.1007/s00421-006-0146-4 (2006).
Gopinathan, G. et al. Interleukin-6 stimulates defective angiogenesis. Can. Res. 75, 3098–3107. https://doi.org/10.1158/0008-5472.can-15-1227 (2015).
Hoeben, A. et al. Vascular endothelial growth factor and angiogenesis. Pharmacol. Rev. 56, 549–580. https://doi.org/10.1124/pr.56.4.3 (2004).
Perdiguero, E. et al. p38/MKP-1-regulated AKT coordinates macrophage transitions and resolution of inflammation during tissue repair. J. Cell Biol. 195, 307–322. https://doi.org/10.1083/jcb.201104053 (2011).
Sag, D., Carling, D., Stout, R. D. & Suttles, J. Adenosine 5’-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J. Immunol. 181, 8633–8641 (2008).
Deng, B., Wehling-Henricks, M., Villalta, S. A., Wang, Y. & Tidball, J. G. IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. J. Immunol. 189, 3669–3680. https://doi.org/10.4049/jimmunol.1103180 (2012).
Schmitz, J. et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23, 479–490. https://doi.org/10.1016/j.immuni.2005.09.015 (2005).
Kuswanto, W. et al. Poor repair of skeletal muscle in aging mice reflects a defect in local, interleukin-33-dependent accumulation of regulatory T cells. Immunity 44, 355–367. https://doi.org/10.1016/j.immuni.2016.01.009 (2016).
Burzyn, D. et al. A special population of regulatory T cells potentiates muscle repair. Cell 155, 1282–1295. https://doi.org/10.1016/j.cell.2013.10.054 (2013).
Lužnik, Z., Anchouche, S. & Dana, R. Regulatory T cells in angiogenesis. J Immunol 205, 2557–2565. https://doi.org/10.4049/jimmunol.2000574 (2020).
Machhi, J. et al. Harnessing regulatory T cell neuroprotective activities for treatment of neurodegenerative disorders. Mol Neurodegener. 15, 32. https://doi.org/10.1186/s13024-020-00375-7 (2020).
Weirather, J. et al. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ. Res. 115, 55–67. https://doi.org/10.1161/circresaha.115.303895 (2014).
Doherty, K. R. et al. Normal myoblast fusion requires myoferlin. Development 132, 5565–5575. https://doi.org/10.1242/dev.02155 (2005).
Demonbreun, A. R. et al. Myoferlin regulation by NFAT in muscle injury, regeneration and repair. J. Cell Sci. 123, 2413–2422. https://doi.org/10.1242/jcs.065375 (2010).
Doherty, K. R. et al. The endocytic recycling protein EHD2 interacts with myoferlin to regulate myoblast fusion. J. Biol. Chem. 283, 20252–20260. https://doi.org/10.1074/jbc.M802306200 (2008).
Horsley, V., Jansen, K. M., Mills, S. T. & Pavlath, G. K. IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113, 483–494. https://doi.org/10.1016/S0092-8674(03)00319-2 (2003).
Borselli, C. et al. Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc. Natl. Acad. Sci. U.S.A. 107, 3287–3292. https://doi.org/10.1073/pnas.0903875106 (2010).
Borselli, C., Cezar, C. A., Shvartsman, D., Vandenburgh, H. H. & Mooney, D. J. The role of multifunctional delivery scaffold in the ability of cultured myoblasts to promote muscle regeneration. Biomaterials 32, 8905–8914. https://doi.org/10.1016/j.biomaterials.2011.08.019 (2011).
Uciechowski, P. & Dempke, W. C. M. Interleukin-6: A masterplayer in the cytokine network. Oncology 98, 131–137. https://doi.org/10.1159/000505099 (2020).
Akdis, M. et al. Interleukins, from 1 to 37, and interferon-gamma: Receptors, functions, and roles in diseases. J. Allergy Clin. Immun. 127, 701-U317. https://doi.org/10.1016/j.jaci.2010.11.050 (2011).
Huey, K. A. Potential roles of vascular endothelial growth factor during skeletal muscle hypertrophy. Exerc. Sport Sci. Rev. 46, 195–202. https://doi.org/10.1249/JES.0000000000000152 (2018).
Meng, J. et al. Accelerated regeneration of the skeletal muscle in RNF13-knockout mice is mediated by macrophage-secreted IL-4/IL-6. Protein Cell 5, 235–247. https://doi.org/10.1007/s13238-014-0025-4 (2014).
White, J. & Smythe, G. (eds) Growth Factors and Cytokines in Skeletal Muscle Development, Growth, Regeneration and Disease (Springer, 2016).
Rochman, I., Paul, W. E. & Ben-Sasson, S. Z. IL-6 increases primed cell expansion and survival. J. Immunol. 174, 4761–4767. https://doi.org/10.4049/jimmunol.174.8.4761 (2005).
Sawano, S. et al. Supplementary immunocytochemistry of hepatocyte growth factor production in activated macrophages early in muscle regeneration. Anim. Sci. J. Nihon chikusan Gakkaiho 85, 994–1000. https://doi.org/10.1111/asj.12264 (2014).
Tonkin, J. et al. Monocyte/macrophage-derived IGF-1 orchestrates murine skeletal muscle regeneration and modulates autocrine polarization. Mol. Ther. 23, 1189–1200. https://doi.org/10.1038/mt.2015.66 (2015).
Kasukonis, B. et al. Codelivery of infusion decellularized skeletal muscle with minced muscle autografts improved recovery from volumetric muscle loss injury in a rat model. Tissue Eng. Part A 22, 1151–1163. https://doi.org/10.1089/ten.TEA.2016.0134 (2016).
Ward, C. L. et al. Autologous minced muscle grafts improve muscle strength in a porcine model of volumetric muscle loss injury. J. Orthop. Trauma 30, e396–e403. https://doi.org/10.1097/BOT.0000000000000673 (2016).
Aurora, A., Garg, K., Corona, B. T. & Walters, T. J. Physical rehabilitation improves muscle function following volumetric muscle loss injury. BMC Sports Sci. Med. Rehabil. https://doi.org/10.1186/2052-1847-6-41 (2014).
Mintz, E. L. et al. Long-term evaluation of functional outcomes following rat volumetric muscle loss injury and repair. Tissue Eng. Part A 26, 140–156. https://doi.org/10.1089/ten.TEA.2019.0126 (2020).
Nakayama, K. H. et al. Rehabilitative exercise and spatially patterned nanofibrillar scaffolds enhance vascularization and innervation following volumetric muscle loss. NPJ Regener. Med. 3, 16. https://doi.org/10.1038/s41536-018-0054-3 (2018).
Quarta, M. et al. Bioengineered constructs combined with exercise enhance stem cell-mediated treatment of volumetric muscle loss. Nat. Commun. 8, 15613. https://doi.org/10.1038/ncomms15613 (2017).
Montravers, P., Maulin, L., Mohler, J. & Carbon, C. Microbiological and inflammatory effects of murine recombinant interleukin-10 in two models of polymicrobial peritonitis in rats. Infect. Immun. 67, 1579–1584. https://doi.org/10.1128/IAI.67.4.1579-1584.1999 (1999).
Alvarez, H. M. et al. Effects of PEGylation and immune complex formation on the pharmacokinetics and biodistribution of recombinant interleukin 10 in mice. Drug Metab. Dispos. 40, 360–373. https://doi.org/10.1124/dmd.111.042531 (2012).
Szelenyi, E. R. & Urso, M. L. Time-course analysis of injured skeletal muscle suggests a critical involvement of ERK1/2 signaling in the acute inflammatory response. Muscle Nerve 45, 552–561. https://doi.org/10.1002/mus.22323 (2012).
Ramos, L. et al. Characterization of skeletal muscle strain lesion induced by stretching in rats: Effects of laser photobiomodulation. Photomed. Laser Surg. 36, 460–467. https://doi.org/10.1089/pho.2018.4473 (2018).
Beiting, D. P., Bliss, S. K., Schlafer, D. H., Roberts, V. L. & Appleton, J. A. Interleukin-10 limits local and body cavity inflammation during infection with muscle-stage Trichinella spiralis. Infect. Immun. 72, 3129–3137. https://doi.org/10.1128/IAI.72.6.3129-3137.2004 (2004).
Barbe, M. F. et al. Key indicators of repetitive overuse-induced neuromuscular inflammation and fibrosis are prevented by manual therapy in a rat model. BMC Musculoskelet. Disord. 22, 417. https://doi.org/10.1186/s12891-021-04270-0 (2021).
Garg, K., Ward, C. L., Rathbone, C. R. & Corona, B. T. Transplantation of devitalized muscle scaffolds is insufficient for appreciable de novo muscle fiber regeneration after volumetric muscle loss injury. Cell Tissue Res. 358, 857–873. https://doi.org/10.1007/s00441-014-2006-6 (2014).
Wu, X., Corona, B. T., Chen, X. & Walters, T. J. A standardized rat model of volumetric muscle loss injury for the development of tissue engineering therapies. BioResearch Open access 1, 280–290. https://doi.org/10.1089/biores.2012.0271 (2012).
Kim, J. T., Kasukonis, B. M., Brown, L. A., Washington, T. A. & Wolchok, J. C. Recovery from volumetric muscle loss injury: A comparison between young and aged rats. Exp. Gerontol. 83, 37–46. https://doi.org/10.1016/j.exger.2016.07.008 (2016).
Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21. https://doi.org/10.1093/bioinformatics/bts635 (2013).
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930. https://doi.org/10.1093/bioinformatics/btt656 (2014).
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140. https://doi.org/10.1093/bioinformatics/btp616 (2010).
Kramer, A., Green, J., Pollard, J. Jr. & Tugendreich, S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 30, 523–530. https://doi.org/10.1093/bioinformatics/btt703 (2014).
Dunn, C. et al. Blood-brain barrier breakdown and astrocyte reactivity evident in the absence of behavioral changes after repeated traumatic brain injury. Neurotrauma Rep. 2, 399–410. https://doi.org/10.1089/neur.2021.0017 (2021).
Castilla-Casadiego, D. A. et al. Methods for the assembly and characterization of polyelectrolyte multilayers as microenvironments to modulate human mesenchymal stromal cell response. ACS Biomater. Sci. Eng. 6, 6626–6651. https://doi.org/10.1021/acsbiomaterials.0c01397 (2020).
Brown, L. A. et al. Moderators of skeletal muscle maintenance are compromised in sarcopenic obese mice. Mech. Ageing Dev. 194, 111404. https://doi.org/10.1016/j.mad.2020.111404 (2021).
Reed, C. Synthesis and Performance Testing of ECM Fiber Scaffolds. Master of Science thesis, University of Arkansas (2021).